Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Epidemics ; 47: 100768, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38643547

RESUMEN

While rapid development and roll out of COVID-19 vaccines is necessary in a pandemic, the process limits the ability of clinical trials to assess longer-term vaccine efficacy. We leveraged COVID-19 surveillance data in the U.S. to evaluate vaccine efficacy in U.S. Government-funded COVID-19 vaccine efficacy trials with a three-step estimation process. First, we used a compartmental epidemiological model informed by county-level surveillance data, a "population model", to estimate SARS-CoV-2 incidence among the unvaccinated. Second, a "cohort model" was used to adjust the population SARS-CoV-2 incidence to the vaccine trial cohort, taking into account individual participant characteristics and the difference between SARS-CoV-2 infection and COVID-19 disease. Third, we fit a regression model estimating the offset between the cohort-model-based COVID-19 incidence in the unvaccinated with the placebo-group COVID-19 incidence in the trial during blinded follow-up. Counterfactual placebo COVID-19 incidence was estimated during open-label follow-up by adjusting the cohort-model-based incidence rate by the estimated offset. Vaccine efficacy during open-label follow-up was estimated by contrasting the vaccine group COVID-19 incidence with the counterfactual placebo COVID-19 incidence. We documented good performance of the methodology in a simulation study. We also applied the methodology to estimate vaccine efficacy for the two-dose AZD1222 COVID-19 vaccine using data from the phase 3 U.S. trial (ClinicalTrials.gov # NCT04516746). We estimated AZD1222 vaccine efficacy of 59.1% (95% uncertainty interval (UI): 40.4%-74.3%) in April, 2021 (mean 106 days post-second dose), which reduced to 35.7% (95% UI: 15.0%-51.7%) in July, 2021 (mean 198 days post-second-dose). We developed and evaluated a methodology for estimating longer-term vaccine efficacy. This methodology could be applied to estimating counterfactual placebo incidence for future placebo-controlled vaccine efficacy trials of emerging pathogens with early termination of blinded follow-up, to active-controlled or uncontrolled COVID-19 vaccine efficacy trials, and to other clinical endpoints influenced by vaccination.

2.
BMC Infect Dis ; 23(1): 708, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864153

RESUMEN

BACKGROUND: Aedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make comprehensive and comparable risk assessments challenging. Geostatistical models combine data from multiple locations and use links with environmental and socioeconomic factors to make predictive risk maps. Here we systematically review past approaches to map risk for different Aedes-borne arboviruses from local to global scales, identifying differences and similarities in the data types, covariates, and modelling approaches used. METHODS: We searched on-line databases for predictive risk mapping studies for dengue, Zika, chikungunya, and yellow fever with no geographical or date restrictions. We included studies that needed to parameterise or fit their model to real-world epidemiological data and make predictions to new spatial locations of some measure of population-level risk of viral transmission (e.g. incidence, occurrence, suitability, etc.). RESULTS: We found a growing number of arbovirus risk mapping studies across all endemic regions and arboviral diseases, with a total of 176 papers published 2002-2022 with the largest increases shortly following major epidemics. Three dominant use cases emerged: (i) global maps to identify limits of transmission, estimate burden and assess impacts of future global change, (ii) regional models used to predict the spread of major epidemics between countries and (iii) national and sub-national models that use local datasets to better understand transmission dynamics to improve outbreak detection and response. Temperature and rainfall were the most popular choice of covariates (included in 50% and 40% of studies respectively) but variables such as human mobility are increasingly being included. Surprisingly, few studies (22%, 31/144) robustly tested combinations of covariates from different domains (e.g. climatic, sociodemographic, ecological, etc.) and only 49% of studies assessed predictive performance via out-of-sample validation procedures. CONCLUSIONS: Here we show that approaches to map risk for different arboviruses have diversified in response to changing use cases, epidemiology and data availability. We identify key differences in mapping approaches between different arboviral diseases, discuss future research needs and outline specific recommendations for future arbovirus mapping.


Asunto(s)
Aedes , Infecciones por Arbovirus , Arbovirus , Fiebre Chikungunya , Dengue , Fiebre Amarilla , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Infecciones por Arbovirus/epidemiología , Fiebre Amarilla/epidemiología , Mosquitos Vectores , Dengue/epidemiología
3.
PLoS Negl Trop Dis ; 17(9): e0011593, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37656759

RESUMEN

Dengue virus (DENV) transmission from humans to mosquitoes is a poorly documented, but critical component of DENV epidemiology. Magnitude of viremia is the primary determinant of successful human-to-mosquito DENV transmission. People with the same level of viremia, however, can vary in their infectiousness to mosquitoes as a function of other factors that remain to be elucidated. Here, we report on a field-based study in the city of Iquitos, Peru, where we conducted direct mosquito feedings on people naturally infected with DENV and that experienced mild illness. We also enrolled people naturally infected with Zika virus (ZIKV) after the introduction of ZIKV in Iquitos during the study period. Of the 54 study participants involved in direct mosquito feedings, 43 were infected with DENV-2, two with DENV-3, and nine with ZIKV. Our analysis excluded participants whose viremia was detectable at enrollment but undetectable at the time of mosquito feeding, which was the case for all participants with DENV-3 and ZIKV infections. We analyzed the probability of onward transmission during 50 feeding events involving 27 participants infected with DENV-2 based on the presence of infectious virus in mosquito saliva 7-16 days post blood meal. Transmission probability was positively associated with the level of viremia and duration of extrinsic incubation in the mosquito. In addition, transmission probability was influenced by the day of illness in a non-monotonic fashion; i.e., transmission probability increased until 2 days after symptom onset and decreased thereafter. We conclude that mildly ill DENV-infected humans with similar levels of viremia during the first two days after symptom onset will be most infectious to mosquitoes on the second day of their illness. Quantifying variation within and between people in their contribution to DENV transmission is essential to better understand the biological determinants of human infectiousness, parametrize epidemiological models, and improve disease surveillance and prevention strategies.


Asunto(s)
Culicidae , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Viremia , Infección por el Virus Zika/epidemiología , Dengue/epidemiología
4.
Nat Commun ; 14(1): 4555, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507373

RESUMEN

Monitoring subnational healthcare quality is important for identifying and addressing geographic inequities. Yet, health facility surveys are rarely powered to support the generation of estimates at more local levels. With this study, we propose an analytical approach for estimating both temporal and subnational patterns of healthcare quality indicators from health facility survey data. This method uses random effects to account for differences between survey instruments; space-time processes to leverage correlations in space and time; and covariates to incorporate auxiliary information. We applied this method for three countries in which at least four health facility surveys had been conducted since 1999 - Kenya, Senegal, and Tanzania - and estimated measures of sick-child care quality per WHO Service Availability and Readiness Assessment (SARA) guidelines at programmatic subnational level, between 1999 and 2020. Model performance metrics indicated good out-of-sample predictive validity, illustrating the potential utility of geospatial statistical models for health facility data. This method offers a way to jointly estimate indicators of healthcare quality over space and time, which could then provide insights to decision-makers and health service program managers.


Asunto(s)
Servicios de Salud , Calidad de la Atención de Salud , Humanos , Instituciones de Salud , Encuestas y Cuestionarios , Encuestas Epidemiológicas
5.
Environ Sci Technol ; 57(28): 10185-10192, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37409942

RESUMEN

Improvements in water and sanitation should reduce cholera risk though the associations between cholera and specific water and sanitation access measures remain unclear. We estimated the association between eight water and sanitation measures and annual cholera incidence access across sub-Saharan Africa (2010-2016) for data aggregated at the country and district levels. We fit random forest regression and classification models to understand how well these measures combined might be able to predict cholera incidence rates and identify high cholera incidence areas. Across spatial scales, piped or "other improved" water access was inversely associated with cholera incidence. Access to piped water, septic or sewer sanitation, and septic, sewer, or "other improved" sanitation were associated with decreased district-level cholera incidence. The classification model had moderate performance in identifying high cholera incidence areas (cross-validated-AUC 0.81, 95% CI 0.78-0.83) with high negative predictive values (93-100%) indicating the utility of water and sanitation measures for screening out areas that are unlikely to be at high cholera risk. While comprehensive cholera risk assessments must incorporate other data sources (e.g., historical incidence), our results suggest that water and sanitation measures could alone be useful in narrowing the geographic focus for detailed risk assessments.


Asunto(s)
Cólera , Agua , Humanos , Saneamiento , Cólera/epidemiología , Cólera/prevención & control , Abastecimiento de Agua , África del Sur del Sahara/epidemiología
6.
PLoS Comput Biol ; 19(6): e1010684, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37307282

RESUMEN

The Ross-Macdonald model has exerted enormous influence over the study of malaria transmission dynamics and control, but it lacked features to describe parasite dispersal, travel, and other important aspects of heterogeneous transmission. Here, we present a patch-based differential equation modeling framework that extends the Ross-Macdonald model with sufficient skill and complexity to support planning, monitoring and evaluation for Plasmodium falciparum malaria control. We designed a generic interface for building structured, spatial models of malaria transmission based on a new algorithm for mosquito blood feeding. We developed new algorithms to simulate adult mosquito demography, dispersal, and egg laying in response to resource availability. The core dynamical components describing mosquito ecology and malaria transmission were decomposed, redesigned and reassembled into a modular framework. Structural elements in the framework-human population strata, patches, and aquatic habitats-interact through a flexible design that facilitates construction of ensembles of models with scalable complexity to support robust analytics for malaria policy and adaptive malaria control. We propose updated definitions for the human biting rate and entomological inoculation rates. We present new formulas to describe parasite dispersal and spatial dynamics under steady state conditions, including the human biting rates, parasite dispersal, the "vectorial capacity matrix," a human transmitting capacity distribution matrix, and threshold conditions. An [Formula: see text] package that implements the framework, solves the differential equations, and computes spatial metrics for models developed in this framework has been developed. Development of the model and metrics have focused on malaria, but since the framework is modular, the same ideas and software can be applied to other mosquito-borne pathogen systems.


Asunto(s)
Culicidae , Malaria Falciparum , Malaria , Adulto , Animales , Humanos , Malaria/epidemiología , Culicidae/fisiología , Ecología , Ecosistema
7.
PLoS Comput Biol ; 19(4): e1010424, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37104528

RESUMEN

The mosquito Aedes aegypti is the vector of a number of medically-important viruses, including dengue virus, yellow fever virus, chikungunya virus, and Zika virus, and as such vector control is a key approach to managing the diseases they cause. Understanding the impact of vector control on these diseases is aided by first understanding its impact on Ae. aegypti population dynamics. A number of detail-rich models have been developed to couple the dynamics of the immature and adult stages of Ae. aegypti. The numerous assumptions of these models enable them to realistically characterize impacts of mosquito control, but they also constrain the ability of such models to reproduce empirical patterns that do not conform to the models' behavior. In contrast, statistical models afford sufficient flexibility to extract nuanced signals from noisy data, yet they have limited ability to make predictions about impacts of mosquito control on disease caused by pathogens that the mosquitoes transmit without extensive data on mosquitoes and disease. Here, we demonstrate how the differing strengths of mechanistic realism and statistical flexibility can be fused into a single model. Our analysis utilizes data from 176,352 household-level Ae. aegypti aspirator collections conducted during 1999-2011 in Iquitos, Peru. The key step in our approach is to calibrate a single parameter of the model to spatio-temporal abundance patterns predicted by a generalized additive model (GAM). In effect, this calibrated parameter absorbs residual variation in the abundance time-series not captured by other features of the mechanistic model. We then used this calibrated parameter and the literature-derived parameters in the agent-based model to explore Ae. aegypti population dynamics and the impact of insecticide spraying to kill adult mosquitoes. The baseline abundance predicted by the agent-based model closely matched that predicted by the GAM. Following spraying, the agent-based model predicted that mosquito abundance rebounds within about two months, commensurate with recent experimental data from Iquitos. Our approach was able to accurately reproduce abundance patterns in Iquitos and produce a realistic response to adulticide spraying, while retaining sufficient flexibility to be applied across a range of settings.


Asunto(s)
Aedes , Virus Chikungunya , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Mosquitos Vectores/fisiología , Dinámica Poblacional , Virus de la Fiebre Amarilla , Dengue/epidemiología
8.
Lancet ; 401(10385): 1341-1360, 2023 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-36966780

RESUMEN

BACKGROUND: The USA struggled in responding to the COVID-19 pandemic, but not all states struggled equally. Identifying the factors associated with cross-state variation in infection and mortality rates could help to improve responses to this and future pandemics. We sought to answer five key policy-relevant questions regarding the following: 1) what roles social, economic, and racial inequities had in interstate variation in COVID-19 outcomes; 2) whether states with greater health-care and public health capacity had better outcomes; 3) how politics influenced the results; 4) whether states that imposed more policy mandates and sustained them longer had better outcomes; and 5) whether there were trade-offs between a state having fewer cumulative SARS-CoV-2 infections and total COVID-19 deaths and its economic and educational outcomes. METHODS: Data disaggregated by US state were extracted from public databases, including COVID-19 infection and mortality estimates from the Institute for Health Metrics and Evaluation's (IHME) COVID-19 database; Bureau of Economic Analysis data on state gross domestic product (GDP); Federal Reserve economic data on employment rates; National Center for Education Statistics data on student standardised test scores; and US Census Bureau data on race and ethnicity by state. We standardised infection rates for population density and death rates for age and the prevalence of major comorbidities to facilitate comparison of states' successes in mitigating the effects of COVID-19. We regressed these health outcomes on prepandemic state characteristics (such as educational attainment and health spending per capita), policies adopted by states during the pandemic (such as mask mandates and business closures), and population-level behavioural responses (such as vaccine coverage and mobility). We explored potential mechanisms connecting state-level factors to individual-level behaviours using linear regression. We quantified reductions in state GDP, employment, and student test scores during the pandemic to identify policy and behavioural responses associated with these outcomes and to assess trade-offs between these outcomes and COVID-19 outcomes. Significance was defined as p<0·05. FINDINGS: Standardised cumulative COVID-19 death rates for the period from Jan 1, 2020, to July 31, 2022 varied across the USA (national rate 372 deaths per 100 000 population [95% uncertainty interval [UI] 364-379]), with the lowest standardised rates in Hawaii (147 deaths per 100 000 [127-196]) and New Hampshire (215 per 100 000 [183-271]) and the highest in Arizona (581 per 100 000 [509-672]) and Washington, DC (526 per 100 000 [425-631]). A lower poverty rate, higher mean number of years of education, and a greater proportion of people expressing interpersonal trust were statistically associated with lower infection and death rates, and states where larger percentages of the population identify as Black (non-Hispanic) or Hispanic were associated with higher cumulative death rates. Access to quality health care (measured by the IHME's Healthcare Access and Quality Index) was associated with fewer total COVID-19 deaths and SARS-CoV-2 infections, but higher public health spending and more public health personnel per capita were not, at the state level. The political affiliation of the state governor was not associated with lower SARS-CoV-2 infection or COVID-19 death rates, but worse COVID-19 outcomes were associated with the proportion of a state's voters who voted for the 2020 Republican presidential candidate. State governments' uses of protective mandates were associated with lower infection rates, as were mask use, lower mobility, and higher vaccination rate, while vaccination rates were associated with lower death rates. State GDP and student reading test scores were not associated with state COVD-19 policy responses, infection rates, or death rates. Employment, however, had a statistically significant relationship with restaurant closures and greater infections and deaths: on average, 1574 (95% UI 884-7107) additional infections per 10 000 population were associated in states with a one percentage point increase in employment rate. Several policy mandates and protective behaviours were associated with lower fourth-grade mathematics test scores, but our study results did not find a link to state-level estimates of school closures. INTERPRETATION: COVID-19 magnified the polarisation and persistent social, economic, and racial inequities that already existed across US society, but the next pandemic threat need not do the same. US states that mitigated those structural inequalities, deployed science-based interventions such as vaccination and targeted vaccine mandates, and promoted their adoption across society were able to match the best-performing nations in minimising COVID-19 death rates. These findings could contribute to the design and targeting of clinical and policy interventions to facilitate better health outcomes in future crises. FUNDING: Bill & Melinda Gates Foundation, J Stanton, T Gillespie, J and E Nordstrom, and Bloomberg Philanthropies.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias/prevención & control , SARS-CoV-2 , Escolaridad , Políticas
9.
PLoS One ; 18(2): e0273798, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730229

RESUMEN

Current knowledge of dengue virus (DENV) transmission provides only a partial understanding of a complex and dynamic system yielding a public health track record that has more failures than successes. An important part of the problem is that the foundation for contemporary interventions includes a series of longstanding, but untested, assumptions based on a relatively small portion of the human population; i.e., people who are convenient to study because they manifest clinically apparent disease. Approaching dengue from the perspective of people with overt illness has produced an extensive body of useful literature. It has not, however, fully embraced heterogeneities in virus transmission dynamics that are increasingly recognized as key information still missing in the struggle to control the most important insect-transmitted viral infection of humans. Only in the last 20 years have there been significant efforts to carry out comprehensive longitudinal dengue studies. This manuscript provides the rationale and comprehensive, integrated description of the methodology for a five-year longitudinal cohort study based in the tropical city of Iquitos, in the heart of the Peruvian Amazon. Primary data collection for this study was completed in 2019. Although some manuscripts have been published to date, our principal objective here is to support subsequent publications by describing in detail the structure, methodology, and significance of a specific research program. Our project was designed to study people across the entire continuum of disease, with the ultimate goal of quantifying heterogeneities in human variables that affect DENV transmission dynamics and prevention. Because our study design is applicable to other Aedes transmitted viruses, we used it to gain insights into Zika virus (ZIKV) transmission when during the project period ZIKV was introduced and circulated in Iquitos. Our prospective contact cluster investigation design was initiated by detecttion of a person with a symptomatic DENV infection and then followed that person's immediate contacts. This allowed us to monitor individuals at high risk of DENV infection, including people with clinically inapparent and mild infections that are otherwise difficult to detect. We aimed to fill knowledge gaps by defining the contribution to DENV transmission dynamics of (1) the understudied majority of DENV-infected people with inapparent and mild infections and (2) epidemiological, entomological, and socio-behavioral sources of heterogeneity. By accounting for factors underlying variation in each person's contribution to transmission we sought to better determine the type and extent of effort needed to better prevent virus transmission and disease.


Asunto(s)
Arbovirus , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Humanos , Estudios Longitudinales , Estudios Prospectivos , Perú/epidemiología , Infección por el Virus Zika/epidemiología
10.
Trials ; 24(1): 9, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600308

RESUMEN

BACKGROUND: Spatial repellents (SRs) have been widely used for prevention of mosquito bites, but their efficacy in reducing Aedes-borne viruses (ABV) has not been tested rigorously at large scale in Asia. To address this knowledge gap, a trial to evaluate the efficacy of Mosquito Shield™, a transfluthrin SR, was developed in Gampaha District of Sri Lanka across three Medical Officer of Health areas; i.e., Negombo, Wattala, and Kelaniya. METHODS: This trial is a cluster-randomized, placebo-controlled, double-blinded clinical trial. A total of ~14,430 subjects aged ≥ 6 months in 30 clusters (15 intervention, 15 placebo) from ~3900 households (HH) will be randomly selected for enrolment into a "febrile surveillance cohort." A subset of the surveillance cohort, ~3570 subjects aged ≥4-16 years that test seronegative (naïve) or are serologically positive for a previous single dengue virus (DENV) infection (monotypic) at baseline sampling, will be enrolled into a "longitudinal cohort" for measuring DENV infection based on laboratory-confirmed seroconversion during the trial. Persons identified positive for antibodies against multiple DENV serotypes (multitypic) at baseline will be monitored for secondary analyses. Active ABV disease will be assessed using an enhanced passive surveillance system with case ascertainment performed in designated healthcare facilities. Serum samples will be taken from longitudinal cohort subjects within 1-2 weeks of when intervention is first deployed (T0) with additional samples taken ~12 (T1) and ~24 months (T2) from baseline sampling. DENV seroconversion and ABV active disease rates from baseline (pre-intervention) and follow-up (post-intervention) samples will be compared between intervention and placebo clusters. Participating houses will be monitored entomologically (indoor adult Aedes aegypti population densities and adult female blood fed status) within 3 months before intervention deployment and monthly during the intervention phase. Entomological surveys will monitor indoor adult Ae. aegypti population densities and blood fed status. Dengue incidence in each cohort will be estimated and compared to determine the public health benefit of using an SR. Entomological parameters will be measured to determine if there are entomological correlates of SR efficacy that may be useful for the evaluation of new SR products. DISCUSSION: The trial will serve as an efficacy assessment of SR products in South Asia. Results will be submitted to the World Health Organization Vector Control Advisory Group for assessment of public health value towards an endorsement to recommend inclusion of SRs in ABV control programs. TRIAL REGISTRATION: Sri Lanka Clinical Trial Registry SLCTR /2022/018. Registered on July 1, 2022. CLINICALTRIALS: gov NCT05452447 . Registered on July 11, 2022. The Universal Trial Number is U1111-1275-3055.


Asunto(s)
Aedes , Dengue , Virosis , Adulto , Animales , Niño , Humanos , Femenino , Preescolar , Adolescente , Dengue/diagnóstico , Dengue/epidemiología , Dengue/prevención & control , Sri Lanka/epidemiología , Mosquitos Vectores , Control de Mosquitos/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto
11.
Artículo en Inglés | MEDLINE | ID: mdl-36590345

RESUMEN

Spatial repellent (SR) products are envisioned to complement existing vector control methods through the continual release of volatile active ingredients (AI) providing: (i) protection against day-time and early-evening biting; (ii) protection in enclosed/semi-enclosed and peri-domestic spaces; (iii) various formulations to fit context-specific applications; and (iv) increased coverage over traditional control methods. SR product AIs also have demonstrated effect against insecticide-resistant vectors linked to malaria and Aedes-borne virus (ABV) transmission. Over the past two decades, key stakeholders, including World Health Organization (WHO) representatives, have met to discuss the role of SRs in reducing arthropod-borne diseases based on existing evidence. A key focus has been to establish a critical development path for SRs, including scientific, regulatory and social parameters that would constitute an outline for a SR target product profile, i.e. optimum product characteristics. The principal gap is the lack of epidemiological data demonstrating SR public health impact across a range of different ecological and epidemiological settings, to inform a WHO policy recommendation. Here we describe in brief trials that are designed to fulfill evidence needs for WHO assessment and initial projections of SR cost-effectiveness against malaria and dengue.

12.
Nat Commun ; 13(1): 7457, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473841

RESUMEN

Despite substantial declines since 2000, lower respiratory infections (LRIs), diarrhoeal diseases, and malaria remain among the leading causes of nonfatal and fatal disease burden for children under 5 years of age (under 5), primarily in sub-Saharan Africa (SSA). The spatial burden of each of these diseases has been estimated subnationally across SSA, yet no prior analyses have examined the pattern of their combined burden. Here we synthesise subnational estimates of the burden of LRIs, diarrhoea, and malaria in children under-5 from 2000 to 2017 for 43 sub-Saharan countries. Some units faced a relatively equal burden from each of the three diseases, while others had one or two dominant sources of unit-level burden, with no consistent pattern geographically across the entire subcontinent. Using a subnational counterfactual analysis, we show that nearly 300 million DALYs could have been averted since 2000 by raising all units to their national average. Our findings are directly relevant for decision-makers in determining which and targeting where the most appropriate interventions are for increasing child survival.


Asunto(s)
Pueblo Africano Subsahariano , Niño , Humanos , Preescolar , África del Norte
13.
Lancet Planet Health ; 6(8): e670-e681, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35932787

RESUMEN

BACKGROUND: Household overcrowding is a serious public health threat associated with high morbidity and mortality. Rapid population growth and urbanisation contribute to overcrowding and poor sanitation in low-income and middle- income countries, and are risk factors for the spread of infectious diseases, including COVID-19, and antimicrobial resistance. Many countries do not have adequate surveillance capacity to monitor household overcrowding. Geostatistical models are therefore useful tools for estimating household overcrowding. In this study, we aimed to estimate household overcrowding in Africa between 2000 and 2018 by combining available household survey data, population censuses, and other country-specific household surveys within a geostatistical framework. METHODS: We used data from household surveys and population censuses to generate a Bayesian geostatistical model of household overcrowding in Africa for the 19-year period between 2000 and 2018. Additional sociodemographic and health-related covariates informed the model, which covered 54 African countries. FINDINGS: We analysed 287 surveys and population censuses, covering 78 695 991 households. Spatial and temporal variability arose in household overcrowding estimates over time. In 2018, the highest overcrowding estimates were observed in the Horn of Africa region (median proportion 62% [IQR 57-63]); the lowest regional median proportion was estimated for the north of Africa region (16% [14-19]). Overall, 474·4 million (95% uncertainty interval [UI] 250·1 million-740·7 million) people were estimated to be living in overcrowded conditions in Africa in 2018, a 62·7% increase from the estimated 291·5 million (180·8 million-417·3 million) people who lived in overcrowded conditions in the year 2000. 48·5% (229·9 million) of people living in overcrowded conditions came from six African countries (Nigeria, Ethiopia, Democratic Republic of the Congo, Sudan, Uganda, and Kenya), with a combined population of 538·3 million people. INTERPRETATION: This study incorporated survey and population censuses data and used geostatistical modelling to estimate continent-wide overcrowding over a 19-year period. Our analysis identified countries and areas with high numbers of people living in overcrowded conditions, thereby providing a benchmark for policy planning and the implementation of interventions such as in infectious disease control. FUNDING: UK Department of Health and Social Care, Wellcome Trust, Bill & Melinda Gates Foundation.


Asunto(s)
COVID-19 , Teorema de Bayes , Humanos , Nigeria , Factores de Riesgo , Saneamiento
14.
Proc Natl Acad Sci U S A ; 119(26): e2118283119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35737833

RESUMEN

Over half the world's population is at risk for viruses transmitted by Aedes mosquitoes, such as dengue and Zika. The primary vector, Aedes aegypti, thrives in urban environments. Despite decades of effort, cases and geographic range of Aedes-borne viruses (ABVs) continue to expand. Rigorously proven vector control interventions that measure protective efficacy against ABV diseases are limited to Wolbachia in a single trial in Indonesia and do not include any chemical intervention. Spatial repellents, a new option for efficient deployment, are designed to decrease human exposure to ABVs by releasing active ingredients into the air that disrupt mosquito-human contact. A parallel, cluster-randomized controlled trial was conducted in Iquitos, Peru, to quantify the impact of a transfluthrin-based spatial repellent on human ABV infection. From 2,907 households across 26 clusters (13 per arm), 1,578 participants were assessed for seroconversion (primary endpoint) by survival analysis. Incidence of acute disease was calculated among 16,683 participants (secondary endpoint). Adult mosquito collections were conducted to compare Ae. aegypti abundance, blood-fed rate, and parity status through mixed-effect difference-in-difference analyses. The spatial repellent significantly reduced ABV infection by 34.1% (one-sided 95% CI lower limit, 6.9%; one-sided P value = 0.0236, z = 1.98). Aedes aegypti abundance and blood-fed rates were significantly reduced by 28.6 (95% CI 24.1%, ∞); z = -9.11) and 12.4% (95% CI 4.2%, ∞); z = -2.43), respectively. Our trial provides conclusive statistical evidence from an appropriately powered, preplanned cluster-randomized controlled clinical trial of the impact of a chemical intervention, in this case a spatial repellent, to reduce the risk of ABV transmission compared to a placebo.


Asunto(s)
Aedes , Repelentes de Insectos , Control de Mosquitos , Mosquitos Vectores , Enfermedades Transmitidas por Vectores , Adulto , Animales , Dengue/epidemiología , Dengue/prevención & control , Humanos , Control de Mosquitos/normas , Perú/epidemiología , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/prevención & control , Enfermedades Transmitidas por Vectores/transmisión , Virus Zika , Infección por el Virus Zika
15.
Sci Adv ; 8(20): eabm8954, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35594349

RESUMEN

Historically, the prevalence of child growth failure (CGF) has been tracked dichotomously as the proportion of children more than 2 SDs below the median of the World Health Organization growth standards. However, this conventional "thresholding" approach fails to recognize child growth as a spectrum and obscures trends in populations with the highest rates of CGF. Our analysis presents the first ever estimates of entire distributions of HAZ, WHZ, and WAZ for each of 204 countries and territories from 1990 to 2020 for children less than 5 years old by age group and sex. This approach reflects the continuous nature of CGF, allows us to more comprehensively assess shrinking or widening disparities over time, and reveals otherwise hidden trends that disproportionately affect the most vulnerable populations.

16.
Lancet ; 399(10344): 2381-2397, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35247311

RESUMEN

BACKGROUND: Gender is emerging as a significant factor in the social, economic, and health effects of COVID-19. However, most existing studies have focused on its direct impact on health. Here, we aimed to explore the indirect effects of COVID-19 on gender disparities globally. METHODS: We reviewed publicly available datasets with information on indicators related to vaccine hesitancy and uptake, health care services, economic and work-related concerns, education, and safety at home and in the community. We used mixed effects regression, Gaussian process regression, and bootstrapping to synthesise all data sources. We accounted for uncertainty in the underlying data and modelling process. We then used mixed effects logistic regression to explore gender gaps globally and by region. FINDINGS: Between March, 2020, and September, 2021, women were more likely to report employment loss (26·0% [95% uncertainty interval 23·8-28·8, by September, 2021) than men (20·4% [18·2-22·9], by September, 2021), as well as forgoing work to care for others (ratio of women to men: 1·8 by March, 2020, and 2·4 by September, 2021). Women and girls were 1·21 times (1·20-1·21) more likely than men and boys to report dropping out of school for reasons other than school closures. Women were also 1·23 (1·22-1·23) times more likely than men to report that gender-based violence had increased during the pandemic. By September 2021, women and men did not differ significantly in vaccine hesitancy or uptake. INTERPRETATION: The most significant gender gaps identified in our study show intensified levels of pre-existing widespread inequalities between women and men during the COVID-19 pandemic. Political and social leaders should prioritise policies that enable and encourage women to participate in the labour force and continue their education, thereby equipping and enabling them with greater ability to overcome the barriers they face. FUNDING: The Bill & Melinda Gates Foundation.


Asunto(s)
COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Escolaridad , Empleo , Femenino , Equidad de Género , Humanos , Masculino , Pandemias/prevención & control
17.
Lancet Planet Health ; 5(12): e893-e904, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34774223

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) is a serious threat to global public health. WHO emphasises the need for countries to monitor antibiotic consumption to combat AMR. Many low-income and middle-income countries (LMICs) lack surveillance capacity; we aimed to use multiple data sources and statistical models to estimate global antibiotic consumption. METHODS: In this spatial modelling study, we used individual-level data from household surveys to inform a Bayesian geostatistical model of antibiotic usage in children (aged <5 years) with lower respiratory tract infections in LMICs. Antibiotic consumption data were obtained from multiple sources, including IQVIA, WHO, and the European Surveillance of Antimicrobial Consumption Network (ESAC-Net). The estimates of the antibiotic usage model were used alongside sociodemographic and health covariates to inform a model of total antibiotic consumption in LMICs. This was combined with a single model of antibiotic consumption in high-income countries to produce estimates of antibiotic consumption covering 204 countries and 19 years. FINDINGS: We analysed 209 surveys done between 2000 and 2018, covering 284 045 children with lower respiratory tract infections. We identified large national and subnational variations of antibiotic usage in LMICs, with the lowest levels estimated in sub-Saharan Africa and the highest in eastern Europe and central Asia. We estimated a global antibiotic consumption rate of 14·3 (95% uncertainty interval 13·2-15·6) defined daily doses (DDD) per 1000 population per day in 2018 (40·2 [37·2-43·7] billion DDD), an increase of 46% from 9·8 (9·2-10·5) DDD per 1000 per day in 2000. We identified large spatial disparities, with antibiotic consumption rates varying from 5·0 (4·8-5·3) DDD per 1000 per day in the Philippines to 45·9 DDD per 1000 per day in Greece in 2018. Additionally, we present trends in consumption of different classes of antibiotics for selected Global Burden of Disease study regions using the IQVIA, WHO, and ESAC-net input data. We identified large increases in the consumption of fluoroquinolones and third-generation cephalosporins in North Africa and Middle East, and south Asia. INTERPRETATION: To our knowledge, this is the first study that incorporates antibiotic usage and consumption data and uses geostatistical modelling techniques to estimate antibiotic consumption for 204 countries from 2000 to 2018. Our analysis identifies both high rates of antibiotic consumption and a lack of access to antibiotics, providing a benchmark for future interventions. FUNDING: Fleming Fund, UK Department of Health and Social Care; Wellcome Trust; and Bill & Melinda Gates Foundation.


Asunto(s)
Antibacterianos , Modelos Estadísticos , África del Norte , Antibacterianos/uso terapéutico , Teorema de Bayes , Niño , Preescolar , Salud Global , Humanos
18.
Nat Commun ; 12(1): 5379, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508077

RESUMEN

Probabilistic forecasts play an indispensable role in answering questions about the spread of newly emerged pathogens. However, uncertainties about the epidemiology of emerging pathogens can make it difficult to choose among alternative model structures and assumptions. To assess the potential for uncertainties about emerging pathogens to affect forecasts of their spread, we evaluated the performance 16 forecasting models in the context of the 2015-2016 Zika epidemic in Colombia. Each model featured a different combination of assumptions about human mobility, spatiotemporal variation in transmission potential, and the number of virus introductions. We found that which model assumptions had the most ensemble weight changed through time. We additionally identified a trade-off whereby some individual models outperformed ensemble models early in the epidemic, but on average the ensembles outperformed all individual models. Our results suggest that multiple models spanning uncertainty across alternative assumptions are necessary to obtain robust forecasts for emerging infectious diseases.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Epidemias/estadística & datos numéricos , Monitoreo Epidemiológico , Infección por el Virus Zika/epidemiología , Colombia/epidemiología , Interpretación Estadística de Datos , Conjuntos de Datos como Asunto , Predicción/métodos , Humanos , Modelos Estadísticos , Análisis Espacio-Temporal , Incertidumbre
20.
Nat Commun ; 12(1): 2609, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972512

RESUMEN

Forecasts and alternative scenarios of COVID-19 mortality have been critical inputs for pandemic response efforts, and decision-makers need information about predictive performance. We screen n = 386 public COVID-19 forecasting models, identifying n = 7 that are global in scope and provide public, date-versioned forecasts. We examine their predictive performance for mortality by weeks of extrapolation, world region, and estimation month. We additionally assess prediction of the timing of peak daily mortality. Globally, models released in October show a median absolute percent error (MAPE) of 7 to 13% at six weeks, reflecting surprisingly good performance despite the complexities of modelling human behavioural responses and government interventions. Median absolute error for peak timing increased from 8 days at one week of forecasting to 29 days at eight weeks and is similar for first and subsequent peaks. The framework and public codebase ( https://github.com/pyliu47/covidcompare ) can be used to compare predictions and evaluate predictive performance going forward.


Asunto(s)
COVID-19/mortalidad , Modelos Estadísticos , Predicción , Humanos , SARS-CoV-2 , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...